

FRAUNHOFER INSTITUTE FOR CHEMICAL TECHNOLOGY ICT

ENVIRONMENTAL ENGINEERING – REACTION AND SEPARATION TECHNIQUES

ENVIRONMENTAL ENGINEERING REACTION AND SEPARATION TECHNIQUES

The research group for reaction and separation techniques works on chemical, thermal and mechanical processing techniques. Emphasis is placed on both the manufacture of new products, for example using chemical reactions, and the separation of individual components.

CHEMICAL REACTION TECHNOLOGY

Our work focuses on the development and optimization of environmentally-friendly, sustainable production processes for batch and continuous chemical engineering approaches. In a variety of high-pressure processing units the influence of process parameters on various reactions is investigated. These include pressure, temperature and residence time, as well as the use of catalysts, other fluids and oxidation or reduction agents.

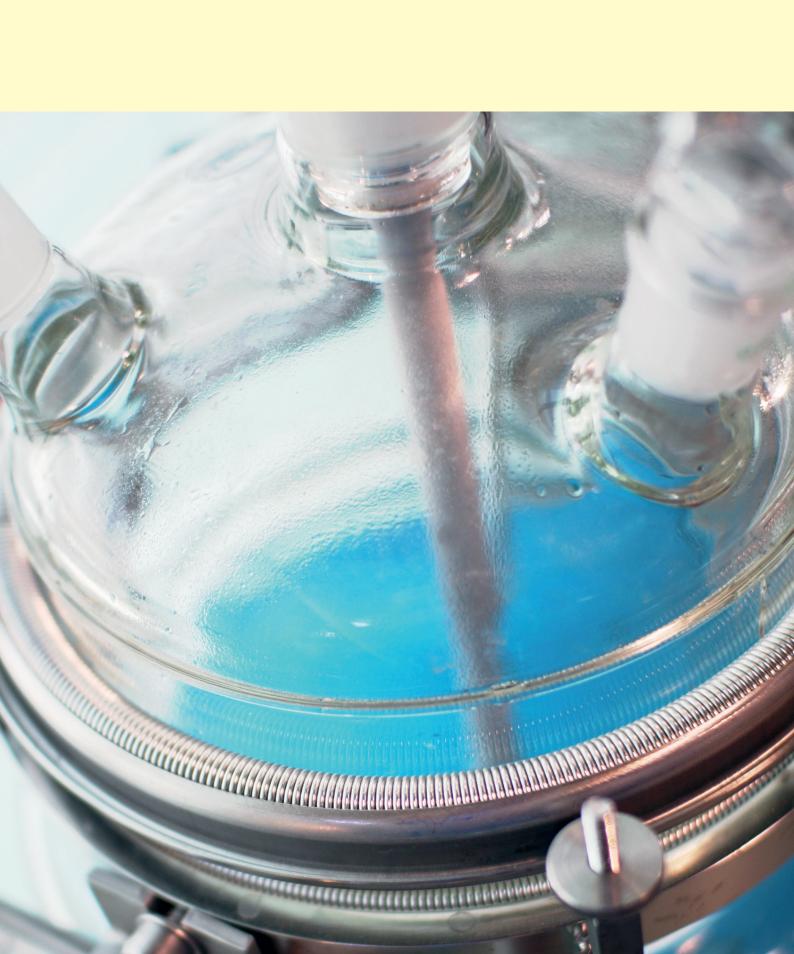
SEPARATION TECHNIQUES

Another focal point of our work is the investigation and optimization of processes for the separation and/or concentration of individual components from different product mixtures.

- A range of equipment is available for
- Distillation and rectification
- Extraction
- Crystallization
- Supercritical fluid extraction
- Membrane processes

PROJECT EXAMPLES

Increasing raw material prices and the depletion of fossil resources have led to an increased trend towards sustainable production processes and the use of renewable raw materials. Our research into reaction and separation techniques is therefore based on the recovery and purification of components from sustainable raw materials and on the recovery of high-value materials or the removal of hazardous substances from waste streams.


Our activities include:

- Separation of fats and oils
- Hydrogenation of sugars to generate sugar polyols
- Fractionation of biomass and the recovery of lignin, cellulose and hemicellulose
- Synthesis of sugar-derived products such as HMF or furfural
- Synthesis of bioethylene, biopropylene and other bioolefins under supercritical conditions
- Breakdown of lignin into phenolic building blocks
- Removal of hazardous substances using supercritical water oxidation
- Purification of tarry synthesis gases
- Fractionation of tall oil
- Purification of bio-based monomers for polymerization
- Purification of product mixtures and waste water streams using membrane processes
- Recovery of phosphates from sewage sludge ashes
- CO₂ extraction of hazardous substances and production residues, and of active ingredients and flavors
- Development of processing concepts for biotechnology
- Production of high-value fatty acids from refining residues

FACILITIES AND EQUIPMENT

Reactors	Batch reactors	Volumes: 0.11; 0.251; 0.51; 21; 131 and 2 x 151 stirred tanks cascade		
		Temperatures up to 600 °C		
		Pressures up to 1000 bar		
		Turbine, anchor and gas-inducing agitator Also available as CSTRs		
	Continuously-operated fixed-bed			
		Pressures up to 350 bar		
	reactors	Flow rate up to 12 l/h		
Distillation and	Laboratory-scale distillation equipm	Reactor length 0,1–12 m		
rectification	Batch-rectification	10 l distilling flask or circulation evaporator		
recurrection	Batch-rectification	· ····································		
		DN30 column, 20 theoretical steps		
		Bubble-tray tower (with 6 trays)		
	High-temperature	Max. temperature of evaporator 350 °C		
	rectification (HTR)	Min. operating pressure ~1 mbar		
		Throughput: 0.1 to 1 kg/h		
		DN50 column, 40 theoretical steps		
		Batch or continuous operation		
	Thin-film / short-path evaporator	Max. temperature of evaporator 350 °C		
		Min. operating pressure 0.001 mbar		
		Throughput: approx. 0.3 to 1.5 kg/h		
Extraction	Stirred extraction column DN30	1200 mm DN30 column with 34 cells		
		Throughput: 0.1 – 9 l/h		
	Mixer-settler (3-stage)	each 250 ml volume		
		entirely temperature-controlled (0 up to +150 °C)		
		Throughput 0.1 – 9 l/h		
	CO ₂ extraction	Phase equilibrium cell		
		Modular testing unit with co-current or counter-current and co-solvent		
		Extractors 50 ml to 250 ml		
		Max. CO ₂ flow-through: 1 kg/h		
	CO ₂ mini-plant with co-current or	Extractors: 2 x 5 l		
	counter-current and co-solvent	2 l extraction column		
		Max. CO ₂ flow-through:	10 kg/h	
Membrane	From reverse osmosis and nano-/ u	rom reverse osmosis and nano-/ ultrafiltration up to micro-filtration		
technology	Dead-end filtration with flat membranes			
	Cross-flow method with flat membranes, tube- and spiral-wound modules			
	Liquid volumes from 0.5 to 300 l			
	Solvent-resistant plants			
	Ceramic plant with two membrane units			
Crystallization		Temperature range – 90 to +200 ° C		
Crystallization	2-liter-crystallizer	Test facilities from 0.5 to 10 l		
			om the melt	
			om solution	
			/ removal of the solvent	
		Modular design of the system allows an extension or integration with other installations		
		Crytal nucleus can be induced to influence the crystal growth		
		Possibility of a rapid swit	tch between sweating and freezing	

ENVIRONMENTAL ENGINEERING -REACTIONS AND SEPARATION TECHNIQUE

Fraunhofer Institute for Chemical Technology ICT

Joseph-von-Fraunhofer-Strasse 7 76327 Pfinztal (Berghausen) Germany

Director: Prof. Dr.-Ing. Peter Elsner

Contact

Sarah Böringer Phone +49 721 4640-660 Fax +49 721 4640-111 sarah.boeringer@ict.fraunhofer.de

Rainer Schweppe Phone +49 721 4640-173 Fax +49 721 4640-800173 rainer.schweppe@ict.fraunhofer.de

www.ict.fraunhofer.de