The additive manufacturing of continuous-fiber-reinforced plastics is attracting increasing interest in the field of composites manufacturing. Some printers and filaments are already on the market, but most of the available materials with continuous-fiber reinforcement are still expensive, and the printing speed is slow.

Researchers at the Karlsruhe Institute of Technology (KIT), together with the Fraunhofer Institute for Chemical Technology (ICT) and HBH Microwave GmbH, have developed a new method for printing continuous-fiber-reinforced composites with extremely high speed and the possibility to use different filament diameters, called ‘SERPENS’ (Super-Efficient and Rapid Printing by Electromagnetic-Heating-Necessitated System).

The first prototype of a SERPENS microwave printer can manufacture CFRP parts with a 10 to approx. 100 times higher speed than traditional continuous-fiber additive manufacturing technologies, by exploiting the benefits of rapid, selective and volumetric heating of microwaves.

Current additive manufacturing methods have a limited and slow printing speed because the traditional resistive heating approach is intrinsically slow and requires contact. As a result, current additive manufacturing methods manufacture composite products with a low printing speed and little potential for optimization.
The key innovations of this system include the small microwave-resonant heating cavity, the prediction-model-based printing temperature control and the load-dependent planning of the printing path. Using these innovations, SERPENS is able to produce new bionic and free-standing lattice truss CFRP structures in three-dimensional space at outstanding speed.

Key Benefits
- Printing speed of up to 100 mm/s
- Possibility to print different filament diameters (0.35 – 5mm)
- Energy and cost-efficient technology
- Production of free-standing lattice truss structures
- Load-dependent printing path generation

Value
Besides the ultra-high speed, the microwave heating enables a volumetric and homogeneous heating of bigger filament diameters. The diameter of conventional industrially-used continuous-fiber-reinforced filaments is mainly about 0.35 mm. SERPENS, in comparison, allows the use of filaments up to 5 mm thick. This leads to a significantly increased output rate that is over 200 times higher than that of commercially available printers.

The continuous carbon fibers have excellent microwave absorbing properties that result in an extremely high heating efficiency. This technology has the ability to heat the CFRP filaments to 250°C with 18 W power in less than one second. More importantly, the microwave penetrates the CFRP filament and provides non-contact and volumetric heating benefits such as homogeneity of the temperature distribution. By this means, the quality of printed parts can be optimized and fiber breakage minimized.

The additive manufacturing of CFRP is still at an emerging stage in the composites industry. One of the challenges is to manufacture the composite components with a short production cycle. SERPENS will fill this gap to fabricate industrially required CFRP with ultra-high speed compared to conventional technologies. Furthermore, by taking advantage of the mechanical strength of continuous carbon fiber in the longitude direction, the bionic CFRP and free-standing lattice truss structures can be efficiently produced to place continuous fibers along the load transmission paths.

Partners
SERPENS, developed by the KIT, was funded by an Alexander von Humboldt research grant. The development is supported by the partners Fraunhofer ICT and HBH microwave GmbH. The high-speed microwave additive manufacturing technology will be further refined with research in the field of production of continuous-carbon-fiber-reinforced filaments in different diameters, on Fraunhofer ICT’s industrial scale pultrusion line. These filaments will be produced with the reactive thermoplastic pultrusion process.

In collaboration with

[Image 1: At Fraunhofer ICT produced 3D printing filaments. Photo: ICT.]
[Image 2: SERPENS printer. Photo: KIT.]
[Image 3: 3D printed pyramidal lattice truss structure with endless carbon fiber reinforcement. Photo: KIT.]
[Image 4: CAD model of a lattice wing structure. Photo: KIT.]
[Image 5: Printed lattice wing structure. Photo: KIT.]